jotain siitä, miten korkeus mitataan, erityisesti kyseisen mittauksen nollapiste.
jos mitataan jonkin korkeus maapallolla, on taipumus mitata se suhteessa johonkin konkreettiseen. Maan keskusta ei ole helposti saavutettavissa, ja vasta noin 50 vuotta sitten, meillä ei ollut oikeastaan hyvä käsitys siitä, missä se oli parempi kuin noin 20-30 m. ei oikeastaan ihanteellinen käyttää nollapisteenä korkeusmittauksissa.
lisäksi maan muoto on sellainen, että paras approksimaatio yksinkertaiselle matemaattiselle luvulle on ellipsoidi. Tämä tarkoittaa, että ellipsoidin pinnalla päiväntasaajalla oleva piste on paljon kauempana maan keskipisteestä kuin ellipsoidin pinnalla oleva piste navalla, noin 20 kilometriä. Jälleen, tämä tekee asiat hieman hankala käyttää maapallon keskipisteen nollapiste.
koska se oli saavutettavissa ja vaikutti melko johdonmukaiselta, merenpintaa käytettiin useita satoja vuosia korkeuksien perustana. Tasoitus korkeuserojen määrityskeinona kehitettiin useita tuhansia vuosia sitten, ja niinpä kun tekniikka kehittyi korkeusmittauksen levittämiseksi laajemmille alueille, 1550-1650 Jaa.maanmittausvallankumouksen jälkeen tarvittiin johdonmukainen nolla. Silloisella mittaustarkkuudella merenpinta oli tähän hyvä. 1800-luvulle tultaessa tasaustarkkuutemme oli kuitenkin tullut sellaiseksi, että pystyimme helposti mittaamaan merenpinnan korkeuseroja eri paikoissa samalla rannikolla ja myöhemmin rannikoiden välillä. Pelleilimme tämän kanssa monta vuotta, kunnes noin 50-60 vuotta sitten aloimme aktiivisesti määrittää geoideja paremmiksi vertikaalisiksi datumeiksi. Huomaa, että datum-geoidi on yleensä suunniteltu likimääräiseen merenpinnan tasoon jollakin alueella, ja EGM2008: n tapauksessa koko planeetalla.
se on hyvin lyhyt historia nollapisteen määrittämisestä korkeusmittaukselle.
nyt, kun se tulee Mt. Everestillä sovellamme ”korkeudelle” samoja kriteerejä kuin kaikkeen muuhunkin, eli korkeuseroa tietyn datumin yläpuolella. Tässä tapauksessa datum on nolla alueella, ja perinteisesti se tuli Intiasta, koska siellä tutkimus, joka vahvisti korkeus Mt. Everest tuli. Jos mittaamme ylös, että datum kärki Mt. Everest, meillä on tietty luku. Jos vertaamme tätä muihin paikkoihin maapallolla noiden vuorten huippujen ja niiden paikallisen korkeusdatum-pinnan välisen korkeuseron perusteella, huomaamme, että Mt. Everestillä on suurin korkeusero huipun ja paikallisen datumin välillä.
jos vuoren korkeutta mitataan GNSS: n (puhekielessä GPS) avulla, järjestelmän korkeussijainnin nollapinta on ellipsoidi, ei geoidi. Tämän voi korjata, mutta jos ei tee, käy ilmi, että korkeimman vuoren kohdalla sillä ei ole mitään merkitystä. Ellipsoidimittauksen yläpuolella olevien vuorenhuippujen korkeuksilla on edelleen Mt. Everest johtaa. Mt. Everest, 8,848 m datumin yläpuolella, on 230 m korkeampi kuin K2, joka samalla alueella, Kun sinun täytyy mennä alle 7,200 m datumin yläpuolelle ennen kuin saat vuori, joka on ulkopuolella koko alueen, jossa Intian ja Euraasian laatat ovat yhteentörmäyksessä.
jos halutaan mitata vuoria eri nollapisteillä, saadaan erilaisia tuloksia. Jos vuoren pohjaksi asetetaan nolla ja annetaan sen olla merenpinnan alapuolella, Mauna Kea on korkeampi vuori, vaikka 6 005 m on merenpinnan alapuolella ja 4 205 m merenpinnan yläpuolella. Tämä antaa kaikille saarille valtavan edun, sillä maalla sijaitsevat vuoret ovat yleensä osa vuorijonoja, joten vuoren ”pohja” voi olla paljon merenpinnan yläpuolella, koska sitä ympäröivät muut vuoret. Se johtaa epäjohdonmukaisiin vertailuihin.
jos haluat käyttää maapallon keskipistettä nollapisteenä, niin Päiväntasaajan vuorille tulee valtava korotus korkeudelle, ja Mt. Chimborazo Ecuadorissa on ’korkein’, koska vaikka se on 6248 metriä paikallisen korkeusdatumin yläpuolella, tuo datum on noin 5,5 kilometriä kauempana maan keskipisteestä kuin Mt: n ympärillä oleva korkeusdatum. Everest.
ongelmana maan keskipisteen käyttämisessä korkeusdatumissa on edellä mainittuja kohtia lukuun ottamatta se, että tällaiset mittaukset olettavat maan olevan pallomainen. Paikallisen datumin yläpuolella olevat mittaukset liittyvät paikallisiin vaikutuksiin ja maanpäällisen elämän todellisuuteen, eivätkä vääristä käsityksiämme siitä, mitä ’korkeus’ tarkoittaa. Jos voit pilkkoa ja muuttaa, missä nollapiste on mittauksia varten, niin meillä on nolla johdonmukaisuutta ja ’korkeus’ tulee suurelta osin merkityksettömäksi, ja varmasti kaikki mittaukset ovat samalla tavalla merkityksettömiä.
Mt. Everest on korkein vuori maapallolla, koska se on suurin korkeus yli paikallisen korkeus datum, kuten datum lähentelee merenpintaa. Mauna keaa voidaan pitää suurimpana vuorena etäisyydeltään ylhäältä alas, koska sen pohja on merenpohja. Mt. Chimborazo on vuori, jonka huippu on kauimpana maan keskipisteestä. Mutta et halua pelata nopeasti ja löysä terminologiaa, kuten ’pituus’, koska se voi palata purra sinua.